\(\int \frac {x}{(a+b \csc (c+d x^2))^2} \, dx\) [27]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 120 \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\frac {x^2}{2 a^2}+\frac {b \left (2 a^2-b^2\right ) \text {arctanh}\left (\frac {a+b \tan \left (\frac {1}{2} \left (c+d x^2\right )\right )}{\sqrt {a^2-b^2}}\right )}{a^2 \left (a^2-b^2\right )^{3/2} d}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )} \]

[Out]

1/2*x^2/a^2+b*(2*a^2-b^2)*arctanh((a+b*tan(1/2*d*x^2+1/2*c))/(a^2-b^2)^(1/2))/a^2/(a^2-b^2)^(3/2)/d-1/2*b^2*co
t(d*x^2+c)/a/(a^2-b^2)/d/(a+b*csc(d*x^2+c))

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {4290, 3870, 4004, 3916, 2739, 632, 212} \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\frac {b \left (2 a^2-b^2\right ) \text {arctanh}\left (\frac {a+b \tan \left (\frac {1}{2} \left (c+d x^2\right )\right )}{\sqrt {a^2-b^2}}\right )}{a^2 d \left (a^2-b^2\right )^{3/2}}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a d \left (a^2-b^2\right ) \left (a+b \csc \left (c+d x^2\right )\right )}+\frac {x^2}{2 a^2} \]

[In]

Int[x/(a + b*Csc[c + d*x^2])^2,x]

[Out]

x^2/(2*a^2) + (b*(2*a^2 - b^2)*ArcTanh[(a + b*Tan[(c + d*x^2)/2])/Sqrt[a^2 - b^2]])/(a^2*(a^2 - b^2)^(3/2)*d)
- (b^2*Cot[c + d*x^2])/(2*a*(a^2 - b^2)*d*(a + b*Csc[c + d*x^2]))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 3870

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[b^2*Cot[c + d*x]*((a + b*Csc[c + d*x])^(n +
 1)/(a*d*(n + 1)*(a^2 - b^2))), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[c*(x/a),
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 4290

Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[
(m + 1)/n], 0] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {1}{(a+b \csc (c+d x))^2} \, dx,x,x^2\right ) \\ & = -\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )}-\frac {\text {Subst}\left (\int \frac {-a^2+b^2+a b \csc (c+d x)}{a+b \csc (c+d x)} \, dx,x,x^2\right )}{2 a \left (a^2-b^2\right )} \\ & = \frac {x^2}{2 a^2}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )}-\frac {\left (b \left (2 a^2-b^2\right )\right ) \text {Subst}\left (\int \frac {\csc (c+d x)}{a+b \csc (c+d x)} \, dx,x,x^2\right )}{2 a^2 \left (a^2-b^2\right )} \\ & = \frac {x^2}{2 a^2}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )}-\frac {\left (2 a^2-b^2\right ) \text {Subst}\left (\int \frac {1}{1+\frac {a \sin (c+d x)}{b}} \, dx,x,x^2\right )}{2 a^2 \left (a^2-b^2\right )} \\ & = \frac {x^2}{2 a^2}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )}-\frac {\left (2 a^2-b^2\right ) \text {Subst}\left (\int \frac {1}{1+\frac {2 a x}{b}+x^2} \, dx,x,\tan \left (\frac {1}{2} \left (c+d x^2\right )\right )\right )}{a^2 \left (a^2-b^2\right ) d} \\ & = \frac {x^2}{2 a^2}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )}+\frac {\left (2 \left (2 a^2-b^2\right )\right ) \text {Subst}\left (\int \frac {1}{-4 \left (1-\frac {a^2}{b^2}\right )-x^2} \, dx,x,\frac {2 a}{b}+2 \tan \left (\frac {1}{2} \left (c+d x^2\right )\right )\right )}{a^2 \left (a^2-b^2\right ) d} \\ & = \frac {x^2}{2 a^2}+\frac {b \left (2 a^2-b^2\right ) \text {arctanh}\left (\frac {b \left (\frac {a}{b}+\tan \left (\frac {1}{2} \left (c+d x^2\right )\right )\right )}{\sqrt {a^2-b^2}}\right )}{a^2 \left (a^2-b^2\right )^{3/2} d}-\frac {b^2 \cot \left (c+d x^2\right )}{2 a \left (a^2-b^2\right ) d \left (a+b \csc \left (c+d x^2\right )\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.29 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.32 \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\frac {\csc \left (c+d x^2\right ) \left (\frac {a b^2 \cot \left (c+d x^2\right )}{(-a+b) (a+b)}+\left (c+d x^2\right ) \left (a+b \csc \left (c+d x^2\right )\right )-\frac {2 b \left (-2 a^2+b^2\right ) \arctan \left (\frac {a+b \tan \left (\frac {1}{2} \left (c+d x^2\right )\right )}{\sqrt {-a^2+b^2}}\right ) \left (a+b \csc \left (c+d x^2\right )\right )}{\left (-a^2+b^2\right )^{3/2}}\right ) \left (b+a \sin \left (c+d x^2\right )\right )}{2 a^2 d \left (a+b \csc \left (c+d x^2\right )\right )^2} \]

[In]

Integrate[x/(a + b*Csc[c + d*x^2])^2,x]

[Out]

(Csc[c + d*x^2]*((a*b^2*Cot[c + d*x^2])/((-a + b)*(a + b)) + (c + d*x^2)*(a + b*Csc[c + d*x^2]) - (2*b*(-2*a^2
 + b^2)*ArcTan[(a + b*Tan[(c + d*x^2)/2])/Sqrt[-a^2 + b^2]]*(a + b*Csc[c + d*x^2]))/(-a^2 + b^2)^(3/2))*(b + a
*Sin[c + d*x^2]))/(2*a^2*d*(a + b*Csc[c + d*x^2])^2)

Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.49

method result size
derivativedivides \(\frac {-\frac {2 b \left (\frac {\frac {a^{2} \tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )}{2 a^{2}-2 b^{2}}+\frac {a b}{2 a^{2}-2 b^{2}}}{\frac {\tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )^{2} b}{2}+a \tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )+\frac {b}{2}}+\frac {2 \left (2 a^{2}-b^{2}\right ) \arctan \left (\frac {2 b \tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )+2 a}{2 \sqrt {-a^{2}+b^{2}}}\right )}{\left (2 a^{2}-2 b^{2}\right ) \sqrt {-a^{2}+b^{2}}}\right )}{a^{2}}+\frac {2 \arctan \left (\tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )\right )}{a^{2}}}{2 d}\) \(179\)
default \(\frac {-\frac {2 b \left (\frac {\frac {a^{2} \tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )}{2 a^{2}-2 b^{2}}+\frac {a b}{2 a^{2}-2 b^{2}}}{\frac {\tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )^{2} b}{2}+a \tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )+\frac {b}{2}}+\frac {2 \left (2 a^{2}-b^{2}\right ) \arctan \left (\frac {2 b \tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )+2 a}{2 \sqrt {-a^{2}+b^{2}}}\right )}{\left (2 a^{2}-2 b^{2}\right ) \sqrt {-a^{2}+b^{2}}}\right )}{a^{2}}+\frac {2 \arctan \left (\tan \left (\frac {d \,x^{2}}{2}+\frac {c}{2}\right )\right )}{a^{2}}}{2 d}\) \(179\)
risch \(\frac {x^{2}}{2 a^{2}}-\frac {i b^{2} \left (i a +b \,{\mathrm e}^{i \left (d \,x^{2}+c \right )}\right )}{a^{2} \left (-a^{2}+b^{2}\right ) d \left (2 b \,{\mathrm e}^{i \left (d \,x^{2}+c \right )}-i a \,{\mathrm e}^{2 i \left (d \,x^{2}+c \right )}+i a \right )}+\frac {b \ln \left ({\mathrm e}^{i \left (d \,x^{2}+c \right )}+\frac {i b \sqrt {a^{2}-b^{2}}+a^{2}-b^{2}}{\sqrt {a^{2}-b^{2}}\, a}\right )}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d \,x^{2}+c \right )}+\frac {i b \sqrt {a^{2}-b^{2}}+a^{2}-b^{2}}{\sqrt {a^{2}-b^{2}}\, a}\right )}{2 \sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}-\frac {b \ln \left ({\mathrm e}^{i \left (d \,x^{2}+c \right )}+\frac {i b \sqrt {a^{2}-b^{2}}-a^{2}+b^{2}}{\sqrt {a^{2}-b^{2}}\, a}\right )}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d \,x^{2}+c \right )}+\frac {i b \sqrt {a^{2}-b^{2}}-a^{2}+b^{2}}{\sqrt {a^{2}-b^{2}}\, a}\right )}{2 \sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}\) \(420\)

[In]

int(x/(a+b*csc(d*x^2+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/2/d*(-2/a^2*b*((1/2*a^2/(a^2-b^2)*tan(1/2*d*x^2+1/2*c)+1/2*a*b/(a^2-b^2))/(1/2*tan(1/2*d*x^2+1/2*c)^2*b+a*ta
n(1/2*d*x^2+1/2*c)+1/2*b)+2*(2*a^2-b^2)/(2*a^2-2*b^2)/(-a^2+b^2)^(1/2)*arctan(1/2*(2*b*tan(1/2*d*x^2+1/2*c)+2*
a)/(-a^2+b^2)^(1/2)))+2/a^2*arctan(tan(1/2*d*x^2+1/2*c)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 229 vs. \(2 (111) = 222\).

Time = 0.29 (sec) , antiderivative size = 536, normalized size of antiderivative = 4.47 \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\left [\frac {2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x^{2} \sin \left (d x^{2} + c\right ) + 2 \, {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x^{2} + {\left (2 \, a^{2} b^{2} - b^{4} + {\left (2 \, a^{3} b - a b^{3}\right )} \sin \left (d x^{2} + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x^{2} + c\right )^{2} + 2 \, a b \sin \left (d x^{2} + c\right ) + a^{2} + b^{2} + 2 \, {\left (b \cos \left (d x^{2} + c\right ) \sin \left (d x^{2} + c\right ) + a \cos \left (d x^{2} + c\right )\right )} \sqrt {a^{2} - b^{2}}}{a^{2} \cos \left (d x^{2} + c\right )^{2} - 2 \, a b \sin \left (d x^{2} + c\right ) - a^{2} - b^{2}}\right ) - 2 \, {\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x^{2} + c\right )}{4 \, {\left ({\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \sin \left (d x^{2} + c\right ) + {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d\right )}}, \frac {{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x^{2} \sin \left (d x^{2} + c\right ) + {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x^{2} + {\left (2 \, a^{2} b^{2} - b^{4} + {\left (2 \, a^{3} b - a b^{3}\right )} \sin \left (d x^{2} + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \sin \left (d x^{2} + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \cos \left (d x^{2} + c\right )}\right ) - {\left (a^{3} b^{2} - a b^{4}\right )} \cos \left (d x^{2} + c\right )}{2 \, {\left ({\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \sin \left (d x^{2} + c\right ) + {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d\right )}}\right ] \]

[In]

integrate(x/(a+b*csc(d*x^2+c))^2,x, algorithm="fricas")

[Out]

[1/4*(2*(a^5 - 2*a^3*b^2 + a*b^4)*d*x^2*sin(d*x^2 + c) + 2*(a^4*b - 2*a^2*b^3 + b^5)*d*x^2 + (2*a^2*b^2 - b^4
+ (2*a^3*b - a*b^3)*sin(d*x^2 + c))*sqrt(a^2 - b^2)*log(((a^2 - 2*b^2)*cos(d*x^2 + c)^2 + 2*a*b*sin(d*x^2 + c)
 + a^2 + b^2 + 2*(b*cos(d*x^2 + c)*sin(d*x^2 + c) + a*cos(d*x^2 + c))*sqrt(a^2 - b^2))/(a^2*cos(d*x^2 + c)^2 -
 2*a*b*sin(d*x^2 + c) - a^2 - b^2)) - 2*(a^3*b^2 - a*b^4)*cos(d*x^2 + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*sin(d
*x^2 + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), 1/2*((a^5 - 2*a^3*b^2 + a*b^4)*d*x^2*sin(d*x^2 + c) + (a^4*b - 2
*a^2*b^3 + b^5)*d*x^2 + (2*a^2*b^2 - b^4 + (2*a^3*b - a*b^3)*sin(d*x^2 + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^
2 + b^2)*(b*sin(d*x^2 + c) + a)/((a^2 - b^2)*cos(d*x^2 + c))) - (a^3*b^2 - a*b^4)*cos(d*x^2 + c))/((a^7 - 2*a^
5*b^2 + a^3*b^4)*d*sin(d*x^2 + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d)]

Sympy [F]

\[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\int \frac {x}{\left (a + b \csc {\left (c + d x^{2} \right )}\right )^{2}}\, dx \]

[In]

integrate(x/(a+b*csc(d*x**2+c))**2,x)

[Out]

Integral(x/(a + b*csc(c + d*x**2))**2, x)

Maxima [F(-1)]

Timed out. \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(x/(a+b*csc(d*x^2+c))^2,x, algorithm="maxima")

[Out]

Timed out

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.45 \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=-\frac {{\left (2 \, a^{2} b - b^{3}\right )} {\left (\pi \left \lfloor \frac {d x^{2} + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (b\right ) + \arctan \left (\frac {b \tan \left (\frac {1}{2} \, d x^{2} + \frac {1}{2} \, c\right ) + a}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{4} d - a^{2} b^{2} d\right )} \sqrt {-a^{2} + b^{2}}} - \frac {a b \tan \left (\frac {1}{2} \, d x^{2} + \frac {1}{2} \, c\right ) + b^{2}}{{\left (a^{3} d - a b^{2} d\right )} {\left (b \tan \left (\frac {1}{2} \, d x^{2} + \frac {1}{2} \, c\right )^{2} + 2 \, a \tan \left (\frac {1}{2} \, d x^{2} + \frac {1}{2} \, c\right ) + b\right )}} + \frac {d x^{2} + c}{2 \, a^{2} d} \]

[In]

integrate(x/(a+b*csc(d*x^2+c))^2,x, algorithm="giac")

[Out]

-(2*a^2*b - b^3)*(pi*floor(1/2*(d*x^2 + c)/pi + 1/2)*sgn(b) + arctan((b*tan(1/2*d*x^2 + 1/2*c) + a)/sqrt(-a^2
+ b^2)))/((a^4*d - a^2*b^2*d)*sqrt(-a^2 + b^2)) - (a*b*tan(1/2*d*x^2 + 1/2*c) + b^2)/((a^3*d - a*b^2*d)*(b*tan
(1/2*d*x^2 + 1/2*c)^2 + 2*a*tan(1/2*d*x^2 + 1/2*c) + b)) + 1/2*(d*x^2 + c)/(a^2*d)

Mupad [B] (verification not implemented)

Time = 22.51 (sec) , antiderivative size = 2755, normalized size of antiderivative = 22.96 \[ \int \frac {x}{\left (a+b \csc \left (c+d x^2\right )\right )^2} \, dx=\text {Too large to display} \]

[In]

int(x/(a + b/sin(c + d*x^2))^2,x)

[Out]

- atan((8*a^3*b^3*tan(c/2 + (d*x^2)/2))/((8*a^3*b^9)/(a^6 + a^2*b^4 - 2*a^4*b^2) - (24*a^5*b^7)/(a^6 + a^2*b^4
 - 2*a^4*b^2) + (16*a^7*b^5)/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*a^9*b^3)/(a^6 + a^2*b^4 - 2*a^4*b^2) - (8*a^11*b
)/(a^6 + a^2*b^4 - 2*a^4*b^2)) - (8*a*b^5*tan(c/2 + (d*x^2)/2))/((8*a^3*b^9)/(a^6 + a^2*b^4 - 2*a^4*b^2) - (24
*a^5*b^7)/(a^6 + a^2*b^4 - 2*a^4*b^2) + (16*a^7*b^5)/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*a^9*b^3)/(a^6 + a^2*b^4
- 2*a^4*b^2) - (8*a^11*b)/(a^6 + a^2*b^4 - 2*a^4*b^2)) + (8*a^5*b*tan(c/2 + (d*x^2)/2))/((8*a^3*b^9)/(a^6 + a^
2*b^4 - 2*a^4*b^2) - (24*a^5*b^7)/(a^6 + a^2*b^4 - 2*a^4*b^2) + (16*a^7*b^5)/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*
a^9*b^3)/(a^6 + a^2*b^4 - 2*a^4*b^2) - (8*a^11*b)/(a^6 + a^2*b^4 - 2*a^4*b^2)))/(a^2*d) - (b^2/(a*(a^2 - b^2))
 + (b*tan(c/2 + (d*x^2)/2))/(a^2 - b^2))/(d*(b + b*tan(c/2 + (d*x^2)/2)^2 + 2*a*tan(c/2 + (d*x^2)/2))) - (b*at
an(((b*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((8*tan(c/2 + (d*x^2)/2)*(2*a*b^7 - 2*a^7*b - 8*a^3*b^5 + 9*a
^5*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2) - (4*(2*a*b^6 - 4*a^3*b^4 + 2*a^5*b^2))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (b*
(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((4*(4*a^8*b - 4*a^6*b^3))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*tan(c/2
+ (d*x^2)/2)*(4*a^4*b^6 - 12*a^6*b^4 + 8*a^8*b^2))/(a^7 + a^3*b^4 - 2*a^5*b^2) - (b*((4*(8*a^5*b^6 - 16*a^7*b^
4 + 8*a^9*b^2))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*tan(c/2 + (d*x^2)/2)*(12*a^11*b - 8*a^5*b^7 + 28*a^7*b^5 - 32
*a^9*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2))/(2*(a^8 - a^2*b^6 + 3*a^4*b
^4 - 3*a^6*b^2))))/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*1i)/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)
) - (b*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((4*(2*a*b^6 - 4*a^3*b^4 + 2*a^5*b^2))/(a^6 + a^2*b^4 - 2*a^4
*b^2) - (8*tan(c/2 + (d*x^2)/2)*(2*a*b^7 - 2*a^7*b - 8*a^3*b^5 + 9*a^5*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2) + (b*
(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((4*(4*a^8*b - 4*a^6*b^3))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*tan(c/2
+ (d*x^2)/2)*(4*a^4*b^6 - 12*a^6*b^4 + 8*a^8*b^2))/(a^7 + a^3*b^4 - 2*a^5*b^2) + (b*((4*(8*a^5*b^6 - 16*a^7*b^
4 + 8*a^9*b^2))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*tan(c/2 + (d*x^2)/2)*(12*a^11*b - 8*a^5*b^7 + 28*a^7*b^5 - 32
*a^9*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2))/(2*(a^8 - a^2*b^6 + 3*a^4*b
^4 - 3*a^6*b^2))))/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*1i)/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)
))/((8*(b^5 - 2*a^2*b^3))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (16*tan(c/2 + (d*x^2)/2)*(b^6 - 3*a^2*b^4 + 2*a^4*b^2)
)/(a^7 + a^3*b^4 - 2*a^5*b^2) + (b*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((8*tan(c/2 + (d*x^2)/2)*(2*a*b^7
 - 2*a^7*b - 8*a^3*b^5 + 9*a^5*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2) - (4*(2*a*b^6 - 4*a^3*b^4 + 2*a^5*b^2))/(a^6
+ a^2*b^4 - 2*a^4*b^2) + (b*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((4*(4*a^8*b - 4*a^6*b^3))/(a^6 + a^2*b^
4 - 2*a^4*b^2) + (8*tan(c/2 + (d*x^2)/2)*(4*a^4*b^6 - 12*a^6*b^4 + 8*a^8*b^2))/(a^7 + a^3*b^4 - 2*a^5*b^2) - (
b*((4*(8*a^5*b^6 - 16*a^7*b^4 + 8*a^9*b^2))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*tan(c/2 + (d*x^2)/2)*(12*a^11*b -
 8*a^5*b^7 + 28*a^7*b^5 - 32*a^9*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2))
/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))))/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))))/(2*(a^8 - a^2*b^6
 + 3*a^4*b^4 - 3*a^6*b^2)) + (b*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((4*(2*a*b^6 - 4*a^3*b^4 + 2*a^5*b^2
))/(a^6 + a^2*b^4 - 2*a^4*b^2) - (8*tan(c/2 + (d*x^2)/2)*(2*a*b^7 - 2*a^7*b - 8*a^3*b^5 + 9*a^5*b^3))/(a^7 + a
^3*b^4 - 2*a^5*b^2) + (b*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*((4*(4*a^8*b - 4*a^6*b^3))/(a^6 + a^2*b^4 -
 2*a^4*b^2) + (8*tan(c/2 + (d*x^2)/2)*(4*a^4*b^6 - 12*a^6*b^4 + 8*a^8*b^2))/(a^7 + a^3*b^4 - 2*a^5*b^2) + (b*(
(4*(8*a^5*b^6 - 16*a^7*b^4 + 8*a^9*b^2))/(a^6 + a^2*b^4 - 2*a^4*b^2) + (8*tan(c/2 + (d*x^2)/2)*(12*a^11*b - 8*
a^5*b^7 + 28*a^7*b^5 - 32*a^9*b^3))/(a^7 + a^3*b^4 - 2*a^5*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2))/(2
*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))))/(2*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))))/(2*(a^8 - a^2*b^6 +
3*a^4*b^4 - 3*a^6*b^2))))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*1i)/(d*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*
b^2))